
Rigorous Development of Fault-Tolerant

Systems through Co-Refinement

Ilya Lopatkin & Alexander Romanovsky

Newcastle University, UK

ilya.lopatkin@gmail.com

alexander.romanovsky@newcastle.ac.uk

Motivations

• Tackle systems complexity

• Facilitate industrial acceptance of formal
methods

• Improve formalisation of FT requirements

– High proportion of FT-related requirements to critical
systems

– Fault tolerance requirements are typically intertwined
with functional ones

– Fault assumptions and rigorous definitions of FT
requirements rarely make their way to formal models

2

Introduction

• Refinement

– Structure complex requirements

– Correctness-preserving steps

• Separation of concerns & multiple notations

– Main code vs test cases

– Process description vs temporal properties

– State machine vs safety properties

– UML

– Multiple views with mutual dependencies

3

Overview

• Refinement-based formalism (Event-B)

• Diagrammatic formalism (Mode Views)

• Co-refinement

• Focus on proving safety properties

4

Development process

Physical reality

Hazards, risk analysis

Safety properties

Abstractions

Refinement, decomposition

Implementation, code generation

5

Constituents

• Modelling principles

• Refinement strategy

• Modelling patterns Pattern

Principle

6

Modelling principles

• Reactive style: cause => reaction (properties)

– Cause is typically a state of environment

– Reaction is a system state

• Behaviour restriction

– Start with unconstrained behaviour

– Add constraints during refinement

7

Modelling principles

• Implementable causality rule (behaviour)

– Cause (environmental change) must not depend

on a reaction (system change)

– Careful with system actions

when door = CLOSED

then sensor = true

– will prove the invariant but won’t implement

8

Modelling principles

• Fault tolerant component

– Structuring mechanism

– Hierarchical definition of system components via

functional and error state variables

door_state: {OPENED, CLOSED}

door_condition: {OPERATIONAL, BROKEN}

9

Refinement strategy

10

Example system

11

Safety requirements

• (SAF1) The pressure in the chamber must always
be between the lower external pressure and the
higher internal one

• (SAF2) A door can only be opened if the pressure
values in the chamber and the conjoined
environment are equal

• (SAF3) At most one door is allowed to be opened
at any moment of time

• (SAF4) The pressure in the chamber shall not be
changed unless both doors are closed

12

Failure-free functionality

World

Behaviour

SAF1

SAF2

SAF3
SAF4

13

1

Abstract class of system FT

Safe stop pattern

Safe stop template

14

2

FT requirements

• (FT1) The system shall disallow opening a

degraded door

• (FT2) The system shall stop if at least one of

the doors is broken

• (FT3) If both doors are degraded, the system

shall stop unless there is a user in the

chamber. If the user is present in the chamber,

the system shall allow opening the inner door

15

3

Fault tolerant component

Fault tolerant component refinement

Error state variable

Mode split template

Transition split template

FT1

FT2

FT3

16

4

Fault tolerant component refinement
Error state invariant

Fault tolerant behaviour

17

4

Implementable causality

Behaviour restriction

Behaviour restriction pattern Reactive style

Implementable causality

18

5

Low-level features

• Sensors, actuators through refinement of fault

tolerant components

• Environment (who changes pressure?)

• Control cycle

• Implementation

19

6

7

6

Numbers

• Rodin environment

• 5 Event-B machines

• 3 Modal views

• 356/417 proof obligations proven

automatically

• 61 are Event-B POs

20

Conclusions

• Another medium-scale case study (AOCS) and
a number of smaller ones

• Streamlined approach to refinement-based
modelling

• Focus on demonstrating safety properties

• Additional viewpoint

– Adds rigour to the development process

– Represents system-level FT behaviour

– Captures FT requirements

21

Some links

• More details about FT views:
http://wiki.event-b.org/index.php/Mode/FT_Views

• Previous works:
I. I. Lopatkin. A Method for Rigorous Development of Fault-Tolerant

Systems. PhD thesis, Newcastle University, 2013

II. Lopatkin, A. Iliasov, and A. Romanovsky. Rigorous Development of

Dependable Systems using Fault Tolerance Views. ISSRE'11

III. I. Lopatkin, A. Iliasov, A. Romanovsky, Y. Prokhorova, and E. Troubitsyna.

Patterns for Representing FMEA in Formal Specification of Control

Systems, HASE'11

IV. F. L. Dotti, A. Iliasov, L. Ribeiro, and A. Romanovsky. Modal systems:

Specification, refinement and realisation, ICFEM '09

22

