Newcastle
+ University

Rigorous Development of Fault-Tolerant
Systems through Co-Refinement

llya Lopatkin & Alexander Romanovsky
Newcastle University, UK

ilya.lopatkin@gmail.com
alexander.romanovsky@newcastle.ac.uk

Motivations

e Tackle systems complexity

e Facilitate industrial acceptance of formal
methods

* Improve formalisation of FT requirements

— High proportion of FT-related requirements to critical
systems

— Fault tolerance requirements are typically intertwined
with functional ones

— Fault assumptions and rigorous definitions of FT
requirements rarely make their way to formal models

Introduction

e Refinement
— Structure complex requirements
— Correctness-preserving steps

e Separation of concerns & multiple notations
— Main code vs test cases
— Process description vs temporal properties
— State machine vs safety properties
— UML
— Multiple views with mutual dependencies

Overview

e Refinement-based formalism (Event-B)
e Diagrammatic formalism (Mode Views)
e Co-refinement

 Focus on proving safety properties

Event-B refinement Modal/FT Views refinement
Y Y
M; s View;
proof obligations
A Y
My = View;,,

Development process

Implementation, code generation

Physical reality

Hazards, risk analysis

Refinement, decomposition

Safety properties

Abstractions

Constituents

* Modelling principles Principle
e Refinement strategy

 Modelling patterns Pattern

Modelling principles

e Reactive style: cause => reaction (properties)
— Cause is typically a state of environment
— Reaction is a system state

* Behaviour restriction

— Start with unconstrained behaviour
— Add constraints during refinement

Modelling principles

 Implementable causality rule (behaviour)

— Cause (environmental change) must not depend
on a reaction (system change)

— Careful with system actions

when door = CLOSED
then sensor = true

— will prove the invariant but won’t implement

Modelling principles

* Fault tolerant component
— Structuring mechanism

— Hierarchical definition of system components via
functional and error state variables

door_state: {OPENED, CLOSED}
door condition: {OPERATIONAL, BROKEN}

Refinement strategy

Part 1: P
Reactive system Part 2:
abstract modelling Control system modelling
Step 1 |Failure-free functionality L > Hardware Step 6 E
a i Y E
Step 2 Abstract FT classes | Control cycle Step 7 5
failure-free / safe stop i E

A 4 i
b —

i
Step 3 | Refinement of functionality I Implementation I

Y

Step 4 | FT component refinement

i

Step 5 Behaviour restriction

Example system

Door position sensor
Door opened sensor

\' / Door motor

- £\)\
N

\

Door 1 1
! Door 2

T . T

\ Door closed sensor

Pressure sensors

Safety requirements

(SAF1) The pressure in the chamber must always
be between the lower external pressure and the
higher internal one

(SAF2) A door can only be opened if the pressure
values in the chamber and the conjoined
environment are equal

(SAF3) At most one door is allowed to be opened
at any moment of time

(SAF4) The pressure in the chamber shall not be
changed unless both doors are closed

axioms

Failure-free functionality°

axmi: partition(DOOR_STATE,{OPENED},{CLOSED}, {OPENINGY,

axm?2:
axm3:

{CLOSINGY}, {STOPPEDY})
LOW _PRESSURE =0
HIGH_PRESSURE =2

invariants

invi:
inv2:
inv3:
inv4:
invh:
inv6:
inv7:
inv8:
inv9:

events

doorl € DOOR_STATE

door2 € DOOR_STATE

pressure € N

doorl # CLOSED = pressure = LOW _PRESSURE
door2 # CLOSED = pressure = HIGH_PRESSURE

World

SAF2

doorl = CLOSED V door2 = CLOSED
pressure > LOW _PRESSURE = doorl = CLOSED
pressure < HIGH_PRESSURE = door2 = CLOSED

event openl =

when

grdl: doorl = CLOSED V doorl = STOPPED
grd2: pressure = LOW_PRESSURE
grd3: door2 = CLOSED

then

actl: doorl .= OPENING

end

- | SAF4

pressure > LOW _PRESSURE A pressure < HIGH PRESSURE <—|

SAF3

SAF1

Behaviour

13

Abstract class of system FTe

event openl = extends openl
when grd_stopped: stopped = FALSE

Safe stop pattern

event stop =
when grd_stopped: stopped = FALSE
then act_stopped: stopped := TRUE
event stopped =
when grd: stopped = TRUE

then skip
Normal Stop
A: stopped=FALSE |] A:stopped=TRUE S
afe stop template
G: stopped'=FALSE G: stopped'=TRUE P P
Events: <all functional events> Events: stopped

14

FT requirements

* (FT1) The system shall disallow opening a
degraded door

* (FT2) The system shall stop if at least one of
the doors is broken

e (FT3) If both doors are degraded, the system
shall stop unless there is a user in the
chamber. If the user is present in the chamber,
the system shall allow opening the inner door

Fault tolerant component refinement

Fault tolerant component

door1_cond,door2_cond : {BROKEN, DEGRADED,OK} Error state variable

refines Normal

Normal
Degrade A: door1_cond=0OK A door2_cond=0K Degrade

: Degrade FT3 Degrade E
: Door1 Trapped Door2 || FT1
' | A: door1_cond=DEGRADED a A: door1_cond=DEGRADED a A: door1_cond=0K A .
: door2_cond=0K door2_cond=DEGRADED a door2_cond=DEGRADED | ,
' obj_presence=TRUE .
. Stop on degrade Stop on degrade '
o om omommommmmmm mmmmm mmm o mNe mmm mm mowm mom m E E E E fm E E E E E E E E E E m m m E E E E E E E E E E EEE EmomEm
lBreak User leaves
Stop .
A: door1_cond=BROKEN v door2_cond=BROKEN v Mode split template
(door1_cond=DEGRADED A door2_cond=DEGRADED A - .
FT2 obj presence=FALSE) Transition split template

16

Fault tolerant component refinement

Error state invariant

doorl_cond = BROKEN V door2_cond = BROKENYV
(doorl_cond = DEGRADED A door2_cond = DEGRADEDA
obj_presence = FALSFE) < stopped = TRUE

event break = extends stop

event degrade = Fault tolerant behaviour

event stop_on_degrade = extends stop
when

grdl: doorl_cond = DEGRADED V door2_cond = DEGRADED

grd2: obj presence = FALSE)

grd4: doorl_cond = OK V door2_cond = OK Implementable causality
then

actl: doorl_cond .= DEGRADED
act2: door2_cond := DEGRADED

17

Behaviour restriction

Normal
A: door1_cond=0K A door2_cond=0K
G: TRUE
refinos Doord _ / . . [efines Trapped .\\. refines DOOT2 | e eeeeeeamaaaa

. | Doort | E Trapped | :| Door2
+ | closing | + +lclosing door1[i | closing
event openl = extends openi — ‘ P —
| Doortl |- Trapped| . . Door2
: . ! '| A: door2_cond=DEGRADED A door1_cond=OK A

when doorl_cond = OK -

lnefmnmagannan v pressure=LOW_PRESSURE
refines Stop l l /E G: pressure'=LOW_PRESSURE A door2'=CLOSED '

Behaviour restriction pattern

Implementable causality

18

Low-level features

© Sensors, actuators through refinement of fault
tolerant components

©® Environment (who changes pressure?)
© Control cycle
 Implementation

19

Numbers

Rodin environment
5 Event-B machines
3 Modal views

356/417 proof obligations proven
automatically

61 are Event-B POs

Conclusions

Another medium-scale case study (AOCS) and
a number of smaller ones

Streamlined approach to refinement-based
modelling

Focus on demonstrating safety properties
Additional viewpoint

— Adds rigour to the development process
— Represents system-level FT behaviour
— Captures FT requirements

Some links

* More details about FT views:
http://wiki.event-b.org/index.php/Mode/FT_Views

e Previous works:

l. I. Lopatkin. A Method for Rigorous Development of Fault-Tolerant
Systems. PhD thesis, Newcastle University, 2013

II. Lopatkin, A. lliasov, and A. Romanovsky. Rigorous Development of
Dependable Systems using Fault Tolerance Views. ISSRE'11

Ill. 1. Lopatkin, A. lliasov, A. Romanovsky, Y. Prokhorova, and E. Troubitsyna.
Patterns for Representing FMEA in Formal Specification of Control
Systems, HASE'11

IV. F. L. Dotti, A. lliasov, L. Ribeiro, and A. Romanovsky. Modal systems:
Specification, refinement and realisation, ICFEM '09

